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PROBLEM
In a system of interacting vortices in a pancake-shaped, confined Bose-Einstein condensate with a harmonic trap (with frequency Ω → 0), the

motion of each vortex, sufficiently far away from the others and the condesnsate’s boundary, is a combination of the precession around the trap and the
interaction with other vortices, sufficiently far away from the vortex in question.

The dimensionless equations of motion of our system are
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, ẏi = Si
xi

1− r2i
+ c

N∑
j=1,j 6=1

Sj
xi − xj
r2ij

, with ri =
√
x2i + y2i and rij =

√
(xi − xj)2 + (yi − yj)2

where c is a parameter which depends on the physical parameters of the system and in our case is c = 0.1. These equations can also be derived from
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For N = 3 and S1 = S3 = +1, S2 = −1, we define the generalized positions to be q = (x1, y2, x3) and the generalized momenta to be p = (y1, x2, y3)

and obtain the standard equations of motion. By applying canonical transformations, the Hamiltonian becomes
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For this Hamiltonian, the variable L is an integral of motion -the corresponding generalized position does not appear explicitly in H- and thus the
system can be considered as a 2-degrees of freedom system with L as a parameter.
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METHOD
We considered a 300×300 grid of initial con-

ditions (φ1×J1) for fixed values of h and L. For
each initial condition we calculated the value of
SALI for a maximum value of time tmax = 3000
and created a heatmap in which colors corre-
spond to the value of the time needed for it to
become smaller than 10−12.

Finally, we eliminated areas of collision, i.e.
initial conditions for which the vortices are too
close to each other and have no physical mean-
ing (since they have a finite diameter).

RESULTS
Examples of some orbits with different initial configurations of the first, second and third particle.

Three qualitatively different types of regular orbits: (a) Two of the vortices
rotate around each other, (b) All three vortices revolve around the center

of the BEC, (c) One of the vortices passes through the center

A chaotic orbit: the
orbits intertwine with

each other

Comparison of Poincaré maps and Heatmaps for h = −0.75 and various values of L.
We observe the expansion and contraction of the chaotic region and the phase space as L increases.
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Evolution of the percentage of the chaotic orbits with L, for various values of the energy, h.
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THE SMALLER ALIGNMENT INDEX (SALI)
For a 2N -dimensional phase space of a Hamiltonian flow and an orbit with initial condition

P (0) = (xi(0))2Ni=1, the evolution in time of a deviation vector v(0) = (δxi)
2N
i=1 is defined by the

variational equations.
Following the evolution of two different deviation vectors, v1(0) and v2(0), SALI is defined as

SALI(t) = min {‖v̂1(t) + v̂2(t)‖, ‖v̂1(t)− v̂2(t)‖}

with v̂i(t) = vi(t)
‖vi(t)‖ .

When the orbit is chaotic the two deviation vectors tend to become collinear, so SALI→ 0. When
the orbit is regular, the vectors become tangent to the invariant torus containing the orbit and are
generally non-parallel so SALI→ const. 6= 0.

CONCLUSIONS - FUTURE
This system presents similar behaviour for

every value of the energy h inside the range we
have considered. There is a value ofL for which
a chaotic region appears and as L grows larger
it blows up, contracts for some values and then
returns to about the previous maximum area
before starting to disappear. The exact range
of L for which the whole process takes place is
not constant, but is determined by h.

In addition to being able to get quantitative
estimates of the area of the chaotic region, the
use of SALI can be helpful in systems of more
than three interacting vortices, where the visual
representation of the results is harder, or even
impossible. In those systems we should also be
able to determine the size of the stable region
around the steady states of the system.


